Stats 2MB3, Tutorial 1

Jan 16, 2015

TA Information

- Name: Chengwei Qin (PhD student in Statistics)
- E-mail: qinc4@math.mcmaster.ca
- Webpage: http://ms.mcmaster.ca/~qinc4/
- Office Hours: 10am to 12pm, Friday, HH401

Data Description／Visualization

What u gonna do if one day you receive this file

3	2013／9／3	1057488	2	3	NA	1	2013／9／3	2013／9／4	2013／9／4	NA	NA	NA
4	2013／9／3	1057490	9	0	2013／9／3	1	2013／9／3	2013／9／4	2013／9／4	NA	\＃\＃\＃\＃\＃\＃\＃\＃\＃	2013
5	2013／9／3	1057492	2	4	NA	1	2013／9／3	2013／9／3	2013／9／3	2013／9／3	NA	NA
6	2013／9／3	1057496	108	630	2013／9／3	20	2013／9／3	2013／9／3	2013／9／5	2013／9／5	2013／9／6	2013
7	2013／9／3	1057498	2	8	2013／9／3	2	2013／9／3	2013／9／3	2013／9／3	2013／9／3	2013／9／3	2013
8	2013／9／3	1057502	446	1736	NA	27	2013／9／3	2013／9／3	2013／9／4	2013／9／3	2013／9／4	NA
9	2013／9／3	1057506	262	531	茾茾茾茾茾茾茾	24	2013／9／3	2013／9／3	NA	2013／9／3	茾茾茾茾茾茾茾	2013
10	2013／9／3	1057514	128	651	2013／9／3	31	2013／9／3	2013／9／3	2013／9／3	2013／9／3	2013／9／5	2013
11	2013／9／3	1057516	23	109	2013／9／3	8	2013／9／3	2013／9／3	2013／9／3	2013／9／3	NA	NA
12	2013／9／3	1057518	2	0	NA	1	2013／9／3	2013／9／4	2013／9／4	NA	NA	NA
13	2013／9／3	1057520	1	1	NA	1	2013／9／3	2013／9／3	2013／9／3	NA	NA	NA
14	2013／9／3	1057522	1	0	NA	1	NA	NA	NA	NA	NA	NA
15	2013／9／3	1057524	2	17	NA	3	2013／9／3	2013／9／3	2013／9／3	2013／9／3	NA	2013
16	2013／9／3	1057526	1	4	NA	1	2013／9／3	2013／9／3	2013／9／3	NA	2013／9／3	NA

299988
299989
299990
299991
299992
299993
299994
299995
299996
299997
299998
299999
300900
$2 n n n n 1$

$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2013 / 12 / 12$
$2017 / 12 / 12$

1874052
1874054
1874058
1874066
1874070
1874074
1874076
1874078
1874082
1874084
1874086
1874090
1874094
187102

1	0	NA
7	2	NA
264	884	茾茾茾茾茾茾茾茾
1	0	NA
1	0	NA
3	0	NA
49	101	NA
112	252	NA
1	0	NA
2	5	NA
4	3	NA
2	8	NA
1	0	NA
a	ne	mit

NA
世茾茾茾贲贲
NA
NA
NA
NA
贲茾贲贲贲贲贲

NA
299989 299991 299993 299994 299995 299997 299999 300000

[^0] 74094

OC M M
NA
 NA
NA
NA
NA
NA
NA NA
 NA NA \qquad NA
茾贲贲贲贲贲贲茾茾茾贲贲茾贲

贲茾芹贲贲華贲贲贲贲茾茾贲贲茾茾茾茾茾茾茾 贲茾茾茾茾茾 NNA
茾茾茾茾茾茾 NA NA

Global Connections on Facebook

1.3 billion active Facebook users by July $1^{\text {st }}, 2014$

2014 World Cup Squad

Stem-and-leaf Displays

1. Take leading digits as stem values and trailing digits as leaves;
2. Vertically list stem values;
3. Record leaves beside corresponding stems;
4. Indicate the units.

Ex 10, page 24

Consider the strength data for beams given in Example 1.2
a. Construct a stem-and-leaf display of the data.

What is representative strength value?
Observations highly concentrate on it or not?
b. Is the display symmetric about the representative value or how would you describe it?
c. Any outlying strength values?
d. What proportion of observations exceed 10 Mpa ?
a. A representative strength value would be around 7.5. For the most part, the observations concentrate on stem 7.
b. The display appears to be skewed to smaller values.
c. No outlier.
d. 10.7, 11.3, 11.6, 11.8 are larger than 10. The proportion is $4 / 27$.

Ex 28, page 27

- Human measurements provide a rich area of application for statistical methods. The article reported on a study of children talking to themselves. It was thought that private speech would be related to IQ, because IQ is supposed to measure mental maturity, and it was known that private speech decreases as students progress through the primary grades. The study included 33 students whose firstgrade IQ scores are given here:

Ex 28, page 27

```
data<-c (82,96,99,102,103,103,106,107,108,108,108,108,109,110,110,111,113,113,113,113,115,115,118,118,119,121,122,122,127,132,136,140,146)
stem(data)
The decimal point is 1 digit(s) to the right of the |
8|2
9 | }6
10 | 2336788889
11 | 001333355889
12 | 1227
13 | 26
14 | 06
```

The data is fairly symmetrical, and the representative value is about 113.

Measures of Variability

Sample variance:

$$
\begin{aligned}
& s^{2}=\frac{\sum\left(\mathrm{x}_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}}{n-1} \\
& \sigma^{2}=\frac{\sum\left(\mathrm{x}_{i}-\mu\right)^{2}}{N}
\end{aligned}
$$

Ex 46, page 43

- The accompanying observations on stabilized viscosity for specimens of a certain grade of asphalt with 18% rubber added are from the article " Viscosity Characteristics of RubberModified Asphalts": 2781, 2900, 3013, 2856, 2888.
- a) What are the values of the sample mean and sample median?
- b) Calculate the sample variance using the computational formula.

Ex 46, page 43

a)
mean $=(2781+2900+3013+2856+2888) / 5=2887.6$
Since $2781<2856<2888<2900<3013$, the median is 2888 .
b)

After subtracting 2700, we have $\{81,200,313$, $156,188\}$. By using the sample variance equation (degree of freedom $n-1$), the variance is equal to 7060.3.

[^0]: ni $3 / 12 / 12$

